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Abstract
We propose a new strictly stationary strong mixing diffusion model with marginal multimodal (three-peak) distribution and

exponentially decaying autocorrelation function for modeling of increments of electroencephalogram data collected from

Ugandan children during coma from cerebral malaria. We treat the increments as discrete-time observations and construct

a diffusion process where the stationary distribution is viewed as a mixture of three non-central generalized Gaussian

distributions and we state some important properties related to the moments of this mixture. We estimate the distribution

parameters using the expectation-maximization algorithm, where the added shape parameter is estimated using the higher

order statistics approach based on an analytical relationship between the shape parameter and kurtosis. The derived

estimates are then used for prediction of subsequent neurodevelopment and cognition of cerebral malaria survivors using

the elastic net regression. We compare different predictive models and determine whether additional information obtained

from multimodality of the marginal distributions can be used to improve the prediction.

Keywords Diffusion process � Multimodal distribution � Generalized Gaussian mixture � Diffusion discretization

Mathematics Subject Classification 37M10 � 62M10 � 62G07 � 62J20 � 62P10

1 Introduction

Multimodal distributions arise in data from many diverse

fields ranging from cosmology and astrophysics (Cam-

marota et al. 2014) to behavioral and neuroimaging (Sun

et al. 2019). If these data represent realizations of a

stochastic process with a stationary distribution, models of

such processes with stationary multimodal distributions

may improve upon other models that do not consider

multimodality. Stationarity and distributional properties of

EGG data have substantial variability in the literature.

Some authors treat the EEG data as stationary, whereas

others observed non-stationarity in the data itself, but sta-

tionarity in the increments. These features may depend on

the study population, e.g., children versus adults, subject’s

state (sleeping, in coma, active), type of EEG and other

factors. Stationarity and distributional property may also

vary across multiple EEG channels within the same sam-

ple. Veretennikova et al. (2018) and Leonenko et al.

(2023) developed stochastic models for the increments of

the electroencephalogram (EEG) data from Ugandan chil-

dren in coma due to cerebral malaria, where the increments
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of the stochastic processes had stationary Student or gen-

eralized Gaussian distributions in the Ornstein-Uhlenbeck

type process or diffusion process. In these data the

observed distributions of the increments were consistently

symmetrical around zero across all channels, unimodal

distributions in many channels with a single peak at zero,

but multimodal in other channels. By approximating mul-

timodal distributions with unimodal, useful results have

been obtained in terms of parameters of the stochastic

models improving prediction of subsequent neurodevel-

opmental and cognitive functioning of cerebral malaria

survivors over what can be projected using standard clin-

ical features. The utility of models that allow for multiple

peaks in the stationary distributions is an empirical ques-

tion. The first step in answering this question is con-

structing the corresponding stochastic processes because a

priori they may not exist. We view the EEG increments as

the time series ðXn; n 2 NÞ, representing the model for

discrete-time observations from the diffusion process

ðXt; t� 0Þ with the stationary probability density function.

Once these processes are constructed, the methods for

estimating their parameters need to be considered, and then

the usefulness of the parameter estimates can be tested. In

the context of Ugandan cerebral malaria data, the question

is whether the overall prediction of subsequent neurode-

velopment or cognition can be improved, and whether

additional important predictors can be identified in more

refined models that account for multimodality of the mar-

ginal distributions.

The aim of this paper is stochastic modeling and pre-

diction of evolution of increments of the EEG signal. The

outcomes of the paper could have impact to public health

policies for related risk assessment and be beneficial to

health specialists dealing with the cerebral malaria in low

and middle income developed areas that lack medical

equipment.

The paper is structured as follows. In Sect. 2 we derive

the parametrization of the probability density function of

the distribution of increments as a mixture of three non-

central generalized Gaussian distributions (MixGGD). In

the next section, we prove the existence by construction of

a diffusion process with the desired stationary distribution

that allows for modeling of multiple peaks in the data. We

then proceed with the methods for parameter estimation for

the constructed diffusion process and obtaining the esti-

mates using the proposed method given real data. Then the

derived estimates are used for prediction of subsequent

neurodevelopment or cognition of survivors of cerebral

malaria. We conclude with the comparison of predictive

models to inform future applications of the new diffusion

models in the example population in Sect. 7.

2 A mixture of non-central Gaussian
distributions

We parametrize the probability density function (PDF) of

the distribution of increments as a mixture of three non-

central generalized Gaussian distributions and we call this

distribution mixed generalized Gaussian distribution

(MixGGD). The probability density function (PDF) of

MixGGD is of the following form:

ffðxÞ ¼
X3

k¼1

wipkðxjfÞ ¼
X3

k¼1

wk

2ðskr2kÞ
1=skC 1þ 1

sk

� � e
�jx�lk j

sk

skr
2
k

ð1Þ

where f ¼ ðf1; f2; f3Þ, fk ¼ ðlk; sk; r2k ;wkÞ are parameters

of the distribution. Note that lk 2 R, sk [ 0, rk [ 0 and

0�wk � 1 such that
P3

k¼1 wk ¼ 1.

For the specific values of some parameters, the

MixGGD family containes the following well-known and

widely applied distributions:

• For s1 ¼ s2 ¼ s3 ¼ 1 the MixGGD becomes the mix-

ture of three Laplace distributions,

• For s1 ¼ s2 ¼ s3 ¼ 2 the MixGGD becomes the mix-

ture of three Gaussian distributions,

• For s1 ¼ 1 and s2 ¼ s3 ¼ 2 the MixGGD becomes the

mixture of one Laplace and two Gaussian distributions

(similarly for other combinations of values 1 and 2 of

parameters s1; s2; s3),

• For s1 ¼ 1 and s2 ¼ s3 [ 0 the MixGGD becomes the

mixture of one Laplace and two generalized Gaussian

distributions (similarly for other combinations of same

values of parameters s1; s2; s3),

• For s1 ¼ 2 and s2 ¼ s3 [ 0 the MixGGD becomes the

mixture of one Gaussian and two generalized Gaussian

distributions (similarly for other combinations of same

values of parameters s1; s2; s3).

Different combinations of sk and wk with fixed values of lk
and r2k for a two- and three-component MixGGD are shown

in Fig. 1. For the sake of consistency, throughout this

paper, the leftmost peak is related to the first component in

the mixture (k ¼ 1), the middle peak to the second com-

ponent (k ¼ 2) and the rightmost peak to the third com-

ponent (k ¼ 3) of MixGGD. Observe that a three-

component MixGGD becomes a two-component MixGGD

when the weight of the middle peak is set to 0, i.e. w2 ¼ 0

and by setting w1 ¼ w3 ¼ 0 a three-component MixGGD is

reduced to a (unimodal) generalized Gaussian distribution.

Further, we state some important properties related to

moments of the MixGGD. All moments exist, without any

restrictions on parameter values. The integer moment of

order n 2 N is given by
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while the central moments are given by

E½ X � E½X�ð Þn�

¼
X3

k¼1

wk
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n
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� �
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Since the estimation of the shape parameter sk will be

based on the value of kurtosis for each of the components

of MixGGD (see Sect. 4), here for completeness we pro-

vide the expression for kurtosis for the MixGGD.

j ¼
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wili
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Some properties of a similar parametrization of MixGGD,

where skr2k
� �1=sk is treated as one parameter, and its rela-

tion to the multivariate generalized error distribution are

studied in Wen et al. (2022). In particular, Wen et al.

(2022) consider the MixGGD with two components and

present the explicit expressions for the distribution func-

tion, hazard rate function, characteristic function and some

numerical characteristics (moments, central moments,

skewness and kurtosis) as well as the study of moment

estimation, maximum likelihood estimation and the ECM

algorithm for estimation of parameters of this special case

of MixGGD.

3 The three peak generalized Gaussian
diffusion

Important probabilistic properties of EEG increments will

be described by fitting these discrete-time observations to

the continuous-time diffusion process X ¼ ðXt; t� 0Þ with
the stationary PDF ff given by (1).

Since the PDF (1) is continuous, bounded, strictly pos-

itive on R, has expectation l ¼
P3

k¼1

wklk and finite vari-

ance, according to Bibby et al. (2005) [Theorem 2.1, page

193] the stochastic differential equation (SDE)

dXt ¼ �h Xt � lð Þ dt þ
ffiffiffiffiffiffiffiffiffiffiffi
vðXtÞ

p
dBt; t� 0; ð4Þ

has a unique Markovian weak solution X ¼ ðXt; t� 0Þ that
is ergodic with the invariant density (1), where

• ðBt; t� 0Þ is the driving Brownian motion independent

of X0,

Fig. 1 MixGGD with different combinations of sk and wk parameters for K ¼ 2 and K ¼ 3
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• h[ 0 is the parameter describing the speed of reversion

of diffusion X towards expectation l,
• diffusion coefficient v(x) is given by

vðxÞ ¼ 2h
ffðxÞ

Zx

�1

ðl� yÞffðyÞ dy

¼ 2h
X3

k¼1

wk

ck
e
�jx�lk j

sk

skr
2
k

 !�1

X3

k¼1

ck

Zx

�1

ðl� yÞe
�jy�lk j

sk

skr
2
k dy

0

@

1

A

ð5Þ

and it is strictly positive, i.e. vðxÞ[ 0 for all x 2 R (for

details we refer to Bibby et al. 2005 [Lemma 2.2, page

194]).

Throughout this paper the diffusion X given by the SDE (4)

will be called the mixed generalized Gaussian diffusion

(MixGGDiff). According to Bibby et al. (2005) [Theo-

rem 2.1, page 193], some important properties of

MixGGDiff are:

• The function gðxÞ ¼ ffðxÞvðxÞ satisfies
Z1

�1

gðxÞ dx\1

and

E½XsþtjXs ¼ x� ¼ xe�ht þ lð1� e�htÞ;

• If X0 � ff, MixGGDiff is a strictly stationary process

with E½Xt� ¼ l for all t� 0;

• The autocorrelation function of MixGGDiff is given by

CorrðXsþt;XsÞ ¼ e�ht, s; t� 0.

Remark 3.1 Other mixture distributions are also used in

neurology, e.g. Gaussian mixture is used for estimating and

comparing the shapes of distributions of neuroimaging data

related to aging effects in brain white matter (Kim et al.

2014). Mixture diffusion processes are extensively used in

finance, since due to their multimodality and heavier tails

they often better describe the properties of financial data.

For example, Alexander and Narayanan (2001) studies the

option pricing under Gaussian mixture distributed returns.

Furthermore, in Brigo and Mercurio (2002b) and Brigo and

Mercurio (2002a) diffusions with mixture of log-normal

densities are used for modeling of market smile phe-

nomenon, while in Brigo (2008) the overview of general

properties of mixture diffusion SDEs under assumption of

existence of strong solution and constant starting value is

given.

4 Estimation of the parameters
of the stationary MixGGDiff distribution

Due to the added shape parameter sk, GGD is more flexible

and can approximate a large class of statistical distribu-

tions. However, it also implies there is an additional

parameter to estimate, compared to a Gaussian distribution.

Thus, a K-component MixGGD requires the estimation of

4�K parameters.

Method of estimation of fk ¼ ðlk; sk; r2k ;wkÞ in this part

of the analysis was adopted from Mohamed and Jaı̈dane-

Saı̈dane (2009) and is based on the expectation maxi-

mization (EM) algorithm first proposed by Dempster et al.

(1977). EM algorithm is comprised of two steps: the step to

find the expectation (E-step) and the maximization step

(M-step). The algorithm maximizes the complete log-

likelihood function

lðfÞ ¼
XK

k¼1

XN

i¼1

hk;i ln wkpkðxijlk; sk; r2kÞ
� �

ð6Þ

where

hk;i ¼ pðkjxiÞ ¼
wkpðxijfkÞPK
j¼1 wjpðxijfjÞ

represents the conditional expectation of pk given the

observation xi, i.e. the posterior probability that xi belongs

to the kth component.

Steps of the algorithm are as follows:

• Initialization of the model parameter f;

• Expectation (E-step) where the conditional probability

hk;i is calculated using

h
ðnþ1Þ
k;i ¼ w

ðnÞ
k pðxijlðnÞk ; s

ðnÞ
k ; r2k

ðnÞÞ
PK

j¼1 w
ðnÞ
j pðxijlðnÞj ; s

ðnÞ
j ; r2j

ðnÞÞ

and the computation of lðfÞ is calculated based on the

estimate fðnÞ;
• Maximization (M-step) deals with the numerical max-

imization of the log-likelihood function (6) and the

parameter estimate at iteration ðnþ 1Þ is estimated as

bfðnþ1Þ ¼ argmax
f

lðfðnÞÞ
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Parameters wk; lk; r
2
k are estimated using a set of iterative

equations

cwk
ðnþ1Þ ¼ 1

N

XN

i¼1

h
ðnÞ
k;i ;

clk ðnþ1Þ ¼

PN

i¼1

h
ðnÞ
k;i xi

PN

i¼1

h
ðnÞ
k;i

;

cr2k
ðnþ1Þ ¼

PN

i¼1

h
ðnÞ
k;i xi � lðnÞk

� �2

PN

i¼1

h
ðnÞ
k;i

For the added shape parameters sk, approach based on the

use of higher order statistics from Mohamed and Jaı̈dane-

Saı̈dane (2009) was used. Specifically, values of kurtosis

for each mixture component can be used to derive an

approximation of shape parameters sk. Tesei and Regaz-

zoni (1998) define an analytical relationship between shape

parameter sk and kurtosis jk as

jk ¼
C 5

sk

� �
C 1

sk

� �

C 3
sk

� �� �2 ð7Þ

It is impossible to express sk in terms of jk due to the C
function definition, but an approximation can be found by

applying least squared method on a generic second-order

monotonic analytical expression

jk ¼
1:865s2k þ a1sk þ a2

s2k þ d1sk þ d2

which gives

jk 	
5þ 1:865ðsk þ 0:12Þ2

ðsk þ 0:12Þ2
: ð8Þ

Kurtosis in ðnþ 1Þ iteration is estimated using an iterative

equation

jðnþ1Þ
k ¼

PN

i¼1

h
ðnÞ
k;i xi � lðnÞk

� �2

rðnÞk

� �4PN

i¼1

h
ðnÞ
k;i

with the same weights as for lðnþ1Þ
k and r2k

ðnþ1Þ
. Shape

parameter sk in the ðnþ 1Þ iteration is then approximated

by inverting the monotonic expression (8) resulting in

bsk ðnþ1Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

jðnÞk � 1:865

s
� 0:12 ð9Þ

which is defined for jk [ 1:865 and gives a good

approximation of shape parameter sk as a function of jk
when jk lies in the range of h1:865; 30� (Tesei and

Regazzoni 1996), which corresponds to sk range of

½0:302;1i. For s in range h0:3; 10�, comparison of true

value of kurtosis and approximated value of kurtosis as a

function of shape parameter s based on 8 is shown in Fig. 2

Remark 4.1 Another approach in estimating the shape

parameters sk based on the numerical optimization of the

log-likelihood function can be found in Mohamed and

Jaı̈dane-Saı̈dane (2009). However, the approach is much

more complex due to the system of equations being

strongly nonlinear, sensitivity of initial parameter values

and computational time.

5 Fitting a MixGGD to EEG data

To illustrate an application of the MixGGDiff to real data,

we performed the analysis of EEG data collected in

Uganda between 2008 and 2015 from 78 children 18

months to 12 years of age who were in coma due to

cerebral malaria (Bangirana et al. 2016). EEG were

recorded using the International 10–20 system with the

sampling rate of 500 Hz and the average record duration of

30 min. The Cz electrode placed at the centre of midline

sagittal plane was chosen as the reference electrode for the

recordings from the 19 channels.

Previously, these data were used to fit stochastic models

with unimodal marginal distributions of the increment

process seen in many channels for many children

(Veretennikova et al. 2018; Leonenko et al. 2023). The

estimates of the parameters of the increment process were

then evaluated as potential predictors of subsequent neu-

rodevelopment or cognition for cerebral malaria survivors

to determine their usefulness over and above socio-demo-

graphic characteristics, clinical factors, and child neu-

rodevelopment (for children 5 years of age or younger) or

cognitive score (for children over 5 years of age) at the

time of hospitalization for cerebral malaria after coma. The

use of parameters from stochastic models with unimodal

distributions has improved the prediction, and some of

these parameters were importnant. However, the observed

distributions across a total of 1482 children-channels var-

ied in terms of the number of peaks (Table 1). The question

in the present application was if the analysis using more

refined models that allow for multimodal distributions can

produce additional useful findings.

Parameter estimation was performed without randomly

sampling the values of increments, however, due to the

sensitivity of the estimating equations, outliers had to be

removed prior to the estimation. Outliers were defined as
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data points more than 1.5 of the interquartile range below

the first or above the third quartile.

Although some channels’ histograms displayed a dis-

tribution of up to six peaks, a GGD mixture of maximum

three components (K ¼ 3) was used as the model in our

analysis because 95% of the person-channels had 3 or

fewer peaks. Four- and six-peak channels were reclassified

as having two peaks, and five-peak channels as having

three peaks which can be seen as merging peaks which are

in proximity of each other in the histograms.

Analysis was performed using R version 4.1.2 for

Windows. EM algorithm for estimation of parameters of

MixGGD wasn’t available in R from any of the existing

packages so the algorithm had to be implemented using the

EM method described in 4. The algorithm was imple-

mented for the case of up to three peaks and additionally,

improved with the possibility of forcing a symmetrical

mixture (in terms of location, scale and shape) where, for

the case of two-component mixture the condition cl1 ¼

cl2 ; cr21 ¼ cr22 ; bs1 ¼ bs2 was used and for the three-compo-

nent mixture that condition corresponded to

cl1 ¼ cl3 ; cl2 ¼ 0; cr21 ¼ cr23 ; bs1 ¼ bs3 ; only the weight

parameters weren’t forced to be equal.

To initialize the algorithm, k-means clustering available

from base R package was performed, and then the initial

values of parameters were calculated for each of the

derived clusters. Since the channels had been previously

classified based on their histogram shape, clustering was

performed using the available information about the num-

ber of peaks. Initial values of parameters lk; r
2
k ; wk, along

with initial value of kurtosis jk, for k ¼ 1; 2; 3 were esti-

mated on each of the clusters. Initial value of shape

parameter sk was then calculated using the expression (9).

These values of clk ; cr2k ; bsk and cwk were then used as the

starting points of the algorithm. Stopping criterion for the

algorithm was a tolerance of 10�4 or 1000 iterations. In

cases where the number of peaks wasn’t conclusive, EM

algorithm with all the possible number of peaks was tested

and the performance compared based on the value of AIC,

BIC and/or log-likelihood value. In same cases, the

obtained estimates didn’t present a good fit so an

improvement was tried by forcing the EM algorithm for a

symmetrical mixture; this resulted with an improvement in

4 channels. Algorithm converged (was considered suc-

cessful) in 1263 ð85:3%Þ of the cases (channels) and esti-

mates couldn’t be obtained in a total of 219 ð14:8%Þ cases.
Of these 219 cases where the algorithm was unsuccessful,

77 corresponded to unimodal channels with ‘‘degenerate’’

distribution, and the rest was on multimodal channels. The

reason behind the failure of the algorithm in these cases

was determined to be the value of kurtosis, which was

Fig. 2 Comparison of true value

of kurtosis and approximated

value of kurtosis as a function of

shape parameter s

Table 1 Classification of EEG channels based on the shape of his-

tograms of increments

Histogram shape Number of channels (%)

1-peak 1100 (74.22)

2-peak 144 (9.72)

3-peak 169 (11.40)

4-peak 25 (1.69)

5-peak 40 (2.70)

6-peak 4 (0.27)

Total 1482 (100)
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either lower than 1.865 or greater than 349.087 (these value

of kurtosis result in negative values of shape parameter sk)

so the shape parameter couldn’t be approximated using the

expression (9).

Examples of the obtained fit for the two- and three-

component MixGGD can be seen in Figs. 3 and 4,

respectively. Examples of the fit where a two- or three-

component MixGGD was forced on histograms with more

than three peaks can be seen in Fig. 5. Values of parameter

estimates are given in Table 2.

6 Application to prediction
of neurocognitive scores

6.1 Methods

We investigated the MixGGD parameters as potential

predictors of age-appropriate scores of neurodevelopment

and cognition at 6 months after discharge from the hospital

for cerebral malaria survivors. The scores were computed

as described in earlier work (Veretennikova et al. 2018;

Leonenko et al. 2023) from the Mullen Scales of Early

Learning (Shank 2011) for children 5 years of age or

younger and Kaufman Assessment Battery for Children,

second edition (Kaufman 2004) for children older than 5.

The score at discharge from the hospital was used as one of

the predictors, along with other predictors of neurodevel-

opment and cognition established in the literature: age, sex,

height-for-age and weight-for-age-z-scores using the The

World Health Organization reference norms (WHO 2009),

socioeconomic status, quality of home environment

(Bradley and Caldwell 1979), and Blantyre coma score

reflecting severity of coma (Taylor 2009). In addition to

these predictors, an array of standard clinical measures and

biomarkers from blood and cerebrospinal fluid were

included as in past work (Veretennikova et al. 2018;

Leonenko et al. 2023) in order to investigate whether the

Fig. 3 Examples of fitting a two-component MixGGD to EEG increments

Stochastic Environmental Research and Risk Assessment

123



EEG parameters can improve the prediction of future

neurodevelopment and cognition over and above these

other factors that can be obtained easily or as part of rou-

tine clinical care for cerebral malaria. The 54 non-EEG

features were described elsewhere (Veretennikova et al.

2018; Leonenko et al. 2023). To these features, we added

the EEG parameters reflecting multimodality. First we

added the exact number of peaks (from 1 to 6) on each

channel, treated as a categorical variable to reflect poten-

tially non-linear relationship to the outcome. In the second

group of models, we added the MixGGD parameters trea-

ted as continuos or categorical variables.

For the selection of predictors, we used elastic net

regression. Detailed explanation of the method can be

found in Zou and Hastie (2005). For our analysis, we used

the same procedure explained in Leonenko et al. (2023),

where the tuning of hyperparameters a and k was per-

formed using caret package (Kuhn 2020) with leave-

one-out cross validation. Tuning grid was constructed from

values of k 2 f10�5; 10�4; . . .; 103g and 7 equidistant

points from interval [0.0001, 1] for a. Pair which had the

lowest root mean squared error (RMSE) was chosen for the

final model.

The response variable was the standardized neurode-

velopment or cognitive score taken 6 months after the

discharge from the hospital, and the scores were in the

range of ½�1:99; 1:5�. To asses if the addition of EEG

features can improve the prediction of neurodevelopment

and cognition after coma, several models based on different

feature matrices similar to the ones described in Leonenko

et al. (2023) were constructed. Fitting of stochastic models

would be warranted if the EEG parameters were shown to

be important over and above other measures that can be

obtained easily or as part of routine clinical care for

cerebral malaria.

Fig. 4 Examples of fitting a three-component MixGGD to EEG increments
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Fig. 5 Examples of fitting a three-component MixGGD to EEG increments with more than three peaks

Table 2 MixGGD parameter estimate values

MixGGD parameters

cl1 bs1 cr21 cw1 cl2 bs2 cr22 cw2 cl3 bs3 cr23 cw3

Figure 3a - 33.86 1.34 166.18 0.47 30.16 1.74 283.97 0.53

Figure 3a - 1.41 1.34 5.54 0.52 1.48 1.32 5.29 0.48

Figure 3a - 7.26 2.05 14.30 0.50 7.33 2.00 14.18 0.50

Figure 3a - 1.51 1.14 1.00 0.49 1.47 1.11 0.97 0.51

Figure 4a - 36.89 3.77 112.89 0.23 0.02 0.65 50.48 0.54 37.13 3.88 112.00 0.23

Figure 4a - 7.05 2.74 16.39 0.28 - 0.05 1.67 11.55 0.44 6.99 2.70 16.41 0.28

Figure 4a - 5.82 2.36 1.32 0.19 0.11 2.22 9.69 0.63 5.74 2.43 1.18 0.18

Figure 4a - 3.66 1.80 5.88 0.34 - 0.23 1.28 2.52 0.24 3.06 1.79 6.78 0.42

Figure 5a - 1.81 2.51 1.23 0.49 1.74 2.24 1.15 0.51

Figure 5a - 673.06 1.81 232133.93 0.48 613.24 1.98 260249.63 0.52

Figure 5a - 44.84 3.76 227.45 0.26 - 0.11 2.00 128.94 0.48 45.27 3.90 218.94 0.26

Figure 5a - 40.14 1.07 502.34 0.40 - 0.09 1.32 194.85 0.20 40.54 1.10 501.41 0.40
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Features containing missing values from the non-EEG

dataset had already been imputed for the analysis per-

formed in Leonenko et al. (2023). The same values (hence,

the same feature matrix) were used in this analysis. Missing

values from the non-EEG dataset (i.e. missing values of

clk ; cr2k ; bsk and cwk ) were imputed by hand using a ‘‘ran-

dom-by-peak’’ method. This consisted of imputing random

values from successful channels, i.e. for each missing case

(channel), randomly choosing one channel where the esti-

mation was successful (with respect to the number of

peaks) and using those parameter estimates in place of

missing values.

6.1.1 Non-EEG features model

Feature matrix for this model included a total of 54 non-

EEG features with 78 observations. Maximum number of

missing values per feature was 23, and most of the empty

entries occurred in biomarker panels from cerebrospinal

fluid. Categorical variables such as sex (2 levels) and bcs

(Blantyre coma score, 6 levels) were coded into dummy

variables for the inclusion in the elastic net regression. For

variable bcs, a score of 0 (poor results) was chosen as the

reference level.

6.1.2 Combined non-EEG and number of peaks features
model

Feature matrix for this model was a combination of

aforementioned 54 non-EEG features and additional pre-

dictors containing the information about the number of

peaks on each channel. The model contained a five-level

predictor variable with the number of peaks (0 for ‘‘de-

generate’’ channels, 1; 2; 3 or more than 3 peaks). In case

of the categorical predictor variables, recoding into dummy

variables was performed automatically within caret

package (Kuhn 2020) with the first level acting as the

reference level.

6.1.3 Combined non-EEG and MixGGD features models

Feature matrix for these models consisted of aforemen-

tioned 54 non-EEG features and parameter estimates

clk ; cr2k ; bsk and cwk obtained by fitting a three-component

MixGGD to EEG increments. Out of these parameter

estimates, first model included predictors as a continuos

variable of all parameter estimates, hence for each channel

a total of 12 features were included as a result of fitting a

three-component MixGGD. This meant that the channels

displaying one or two peaks didn’t have the values of

parameter estimates of some components, as these com-

ponents weren’t naturally present in the channel. Those

values were imputed by using the value 0 both as an

indicator and as a natural selection for a parameter estimate

of a missing component, as this value (with the exception

of location parameter lk) wouldn’t occur for any of the

parameters in MixGGD. Two other models that were tested

in the analysis used categorical variables with cut-off val-

ues for parameter estimates of the components. Predictors

for the feature matrices of these models were formed as

follows:

• Two-level for all estimates, except clk ; k ¼ 1; 2; 3

where 0 was selected as a cut-off value for cr2k ; bsk and

cwk ; k ¼ 1; 2; 3 to indicate ‘‘peak not present/present in

channel’’

• Two-level for all estimates, selecting 0 as a cut-off

value for all clk ; cr2k ; bsk and cwk ; k ¼ 1; 2; 3 to indicate

‘‘peak not present/present in channel’’

6.2 Results

After running over a grid of different combinations of

tuning parameters, best tuning parameters across all models

were a ¼ 0:833 and k ¼ 0:1. These values produced the

lowest RMSE. Comparison of models based on the leave-

one-out cross validation RMSE is given in Table 3.

Table 3 Model comparison based on elastic net regression results

Model features included (number of features, including dummy) RMSE Number of non-zero

coefficients

Number of non-zero coefficients from

EEG features subset

Non-EEG features (58) 0.5670 12 N/A

Non-EEG ? number of peaks (134) (categorical predictor with 5

levels)

0.5530 17 2

Non-EEG ? MixGGD features (286) (continuos predictors) 0.5716 10 1

Non-EEG ? MixGGD features (286) (all estimates (except for

clk ) categorical with 2 levels)

0.5693 21 13

Non-EEG ? MixGGD features (286) (all estimates categorical

with 2 levels)

0.5654 34 24
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Models displayed similar RMSE values with the addi-

tion of categorizing the number of peaks in channels

showing only negligible reduction in RMSE, but with a

higher number of non-zero coefficients compared to non-

EEG features model. Note that estimating the actual

parameters related to multimodality did not improve upon

the model where the number of peaks was accounted for

without the peak parameter estimates.

7 Conclusion

Previous analysis of EEG data by Veretennikova et al.

(2018) and Leonenko et al. (2023) showed that the addition

of parameters of stochastic models from EEG data can

improve the prediction of neurodevelopment and cognition

over and above socio-demographic, anthropometric, and

standard clinical factors. This paper builds upon the anal-

ysis of Leonenko et al. (2023) where a generalized Gaus-

sian time series model was used to investigate the effect of

EEG features on neurodevelopment and cognition. Since a

detailed investigation of EEG increments displayed up to

six peaks in some channels, a multimodal distribution was

considered as a refinement for previously used unimodal

distribution. For this purpose, a multimodal diffusion

model with a mixed generalized Gaussian distribution

(MixGGD) as a stationary probability density function was

constructed in this paper. Then this model was applied to

the EEG data to determine the extent to which modeling

multimodality may improve the results obtained from

stochastic models with unimodal stationary distributions.

As a compromise between precision in using the exact

number of peaks and keeping the number of parameters

which need to be estimated within reason, MixGGD was

limited to a total of three components, as there were less

than 5% of channels which manifested in more than three

peaks. Parameter estimation was performed using the

expectation-maximization (EM) algorithm, and the added

shape parameter s was estimated using the approach of

higher order statistics, where the value of kurtosis is used to

derive an approximation of shape parameter s.

Several models with different sets of predictors were

investigated to determine significant predictors of neu-

rodevelopment at point 6 months after coma. Model con-

taining non-EEG features (such as socio-demographic and

anthropometric data and biomarker panels) was used as a

benchmark to see whether including the information from

EEG signals can help in explaining of variation in neu-

rodevelopmental and cognitive scores 6 months post-coma.

To test this, first model consisted of non-EEG features and

predictors with observed number of peaks in channels as a

categorical variable with five levels. Second model con-

sisted of non-EEG features and MixGGD features as

continuos variables. Last two models consisted of non-

EEG features and MixGGD features as categorical vari-

ables with a cut-off value for parameter estimates (except

the location parameter) or all parameter estimates. Cate-

gorization of predictors was used to reduce the noise of the

predictors and account for potential nonlinearity in their

relation to the neurocognitive outcome score.

A total of ten combined (non-EEG and EEG features)

models were investigated. The addition of EEG features

resulted in an improvement of RMSE in seven out of ten

models, but the improvement was negligible. Also, none of

the models which showed an improvement had a smaller

number of non-zero coefficients, which means that an

improvement in RMSE is at the cost of a more complicated

model, i.e. a model with a larger number of predictors.

However, all of the models included at least one predictor

from non-EEG dataset. The model with the lowest RMSE

had the addition of number of peaks as a categorical pre-

dictor with 5 levels (0 for ‘‘degenerate’’ channels, 1; 2; 3 or

more than 3 peaks), where two predictors from this set of

predictors were chosen as significant. Models that didn’t

show an improvement in RMSE were the model with

MixGGD features as continuos predictors, model with

MixGGD features where the estimate of the shape

parameter sk was a categorical predictor with 3 levels and

the model with MixGGD features where estimates of s1
and s3 were categorical with 2 levels and estimate of s2 was

categorical with 3 levels.

In general, the group of models which had the addition

of features relating to the number of peaks on each of the

channels showed an improvement in RMSE compared both

to the benchmark model and the combined non-EEG and

MixGGD features models. This could mean that the

information gained only from the visual investigation of

EEG increments might bring an improvement in prediction

of neurodevelopment, without the need for a more detailed

classification of the underlying distribution and/or esti-

mating the parameters of such distributions. However,

investigating other marginal distributions appropriate for

modelling of EEG signal increments should be performed

to see whether an improvement in prediction can be made

using a more adequate distribution.
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